Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis
نویسندگان
چکیده
In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp2/sp3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided - to the field of nanomedicine - a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications.
منابع مشابه
Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial selfassembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architectu...
متن کاملInorganic-organic hybrid nanomaterial (Fe3O4@SiO2-AQ): A retrievable heterogeneous catalyst for the green synthesis of 4H-chromenes
Preparation of 4-aminiquinaldine grafted on silica-coated nano-Fe3O4 particles (Fe3O4@SiO2-AQ) as a novel retrievable heterogeneous nanocatalyst is described. This novel hybrid nanomaterial was applicated for the green synthesis of substituted 2-amino-4H-chromenes via the one-pot condensation reaction of an aldehyde, malononitrile ...
متن کاملGraphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering.
Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we repo...
متن کاملOne-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery.
The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers an...
متن کاملThe effect of graphite sources on preparation of Photoluminescent graphene nano-sheets for biomedical imaging
Objective(s): Graphene as two-dimensional (2D) materials have attracted wide attention in different fields such as biomedical imaging. Ultra-small graphene nano-sheets (UGNSs) have been designated as low dimensional graphene sheets with lateral dimensions less than few nanometres (≤ 500 nm) in one, two or few layers. Several studies have proven that the process of acidic exfoliation and oxidati...
متن کامل